Technical note: Measuring tropospheric OH and HO2 by laser-induced fluorescence at low pressure. A comparison of calibration techniques

نویسنده

  • S. Dusanter
چکیده

The hydroxyl radical (OH) is one of the most important oxidants in the atmosphere, as it is involved in many reactions that affect regional air quality and global climate change. Because of its high reactivity, measurements of OH radical concentrations in the atmosphere are difficult, and often require careful calibrations that rely on the production of a known concentration of OH at atmospheric pressure. The Indiana University OH instrument, based on the Fluorescence Assay by Gas Expansion technique (FAGE), has been calibrated in the laboratory using two different approaches: the production of OH from the UV-photolysis of water-vapor, and the steady-state production of OH from the reaction of ozone with alkenes. The former technique relies on two different actinometric methods to measure the product of the lamp flux at 184.9-nm and the photolysis time. This quantity derived from N2O actinometry was found to be 1.5 times higher than that derived from O2 actinometry. The water photolysis and ozone-alkene techniques are shown to agree within their experimental uncertainties (respectively 17% and 44%), although the sensitivities derived from the ozone-alkene technique were systematically lower by 40% than those derived from the water-vapor UVphotolysis technique using O2 actinometry. The agreement between the two different methods improves the confidence of the water-vapor photolysis method as an accurate calibration technique for HOx instruments. Because several aspects of the mechanism of the gas phase ozonolysis of alkenes are still uncertain, this technique should be used with caution to calibrate OH instruments. Correspondence to: S. Dusanter ([email protected])

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Total radical yields from tropospheric ethene ozonolysisw

The gas-phase reactions of ozone with alkenes can be significant sources of free radicals (OH, HO2 and RO2) in the Earth’s atmosphere. In this study the total radical production and degradation products from ethene ozonolysis have been measured, under conditions relevant to the troposphere, during a series of detailed simulation chamber experiments. Experiments were carried out in the European ...

متن کامل

Calibration of laser induced fluorescence of the OH radical by cavity ringdown spectroscopy in premixed atmospheric pressure flames

Cavity ringdown spectroscopy (CRDS) of the hydroxyl radical (OH) has been explored in a laminar methane-air flame at atmospheric pressure over a range of equivalence ratio. Laser induced fluorescence of OH calibrated by CRDS in a lean flame compares well to PREMIX calculations using GRI-Mech 3.0. CRDS is a highly sensitive path-integrated diagnostic technique that can yield absolute absorber nu...

متن کامل

Quantification of NO A-X (0, 2) laser-induced fluorescence: investigation of calibration and collisional influences in high-pressure flames.

Laser-induced-fluorescence techniques have been used successfully for quantitative two-dimensional measurements of nitric oxide. NO A-X(0, 2) excitation at 248 nm recently found applications in internal-combustion engines. We assess the collisional processes that influence quantification of signal intensities in terms of saturation, rotational energy transfer, and line broadening, using laminar...

متن کامل

Influence of Rotational Relaxation on Tropospheric O H Laser Induced Fluorescence Measurements

Rotational relaxation of OH molecules in the -II electronic ground state has been observed to occur in collisions with water molecules with gas kinetic probability. It causes an additional contribution to the already well known sources of interference when LIF is used to monitor tropospheric OH. As the laser generated OH is originally produced mostly in high rotational states, the fast relaxati...

متن کامل

Design of and initial results from a highly instrumented reactor for atmospheric chemistry (HIRAC)

The design of a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC) is described and initial results obtained from HIRAC are presented. The ability of HIRAC to perform in-situ laser-induced fluorescence detection of OH and HO2 radicals with the Fluorescence Assay by Gas Expansion (FAGE) technique establishes it as internationally unique for a chamber of its size and pressure/temperatu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007